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Abstract. We consider quantum correlation functions of the antiferromagnetic spin-1
2

HeisenbergXXZ spin chain in a magnetic field. We show that for a magnetic field close to
the critical fieldhc (for the critical magnetic field the ground state is ferromagnetic) certain
correlation functions can be expressed in terms of the solution of the Painlevé V transcendent.
This establishes a relation between solutions of Painlevé differential equations and quantum
correlation functions in models ofinteracting fermions. Painlev́e transcendents were known to
describe correlation functions in models with free fermionic spectra.

1. Introduction

In this paper we continue our investigation of zero-temperature correlation functions of the
XXZ Heisenberg model in the critical regime−1 < 1 < 1 in an external magnetic field.
TheXXZ Hamiltonian is given by

H =
∑
j

σ xj σ
x
j+1 + σ

y

j σ
y

j+1 +1 (σzj σ
z
j+1 − 1)− hσ zj (1.1)

where the sum is over all integersj , L is the length of the lattice,σα are Pauli matrices
andh is an external magnetic field. For later convenience we define1 = cos(2η), where
1
2π < η < π . The free fermionic point in this notation isη = 3

4π . The model (1.1) can
be solved by means of the Bethe Ansatz, which yields a description of the spectrum and
eigenstates (withN down spins andL−N up spins) in terms of the roots of the following
set of coupled algebraic equations [1, 2]:(

sinh(λj − iη)

sinh(λj + iη)

)L
= −

N∏
k=1

sinh(λk − λj + 2iη)

sinh(λk − λj − 2iη)
j = 1 . . . N . (1.2)

For the case1 > −1 it was proved by Yang and Yang in [2] that the ground state is
characterized by a set ofreal λj subject to equations (1.2). In the thermodynamic limit the
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ground state is described by means of an integral equation for the density of the spectral
parametersρ(λ):

2πρ(λ)−
∫ 3

−3
dµ K(λ,µ) ρ(µ) = − sin(2η)

sinh(λ− iη) sinh(λ+ iη)

sin(4η)

sinh(µ− λ+ 2iη) sinh(µ− λ− 2iη)
= K(λ,µ) .

(1.3)

Here the integration boundary3 is a function of the magnetic fieldh. The physical picture
of the ground state is that of a filled Fermi sea with boundaries±3. The dressed energy
of a particle in the sea is given by the solution of the integral equation

ε(λ)− 1

2π

∫ 3

−3
dµ K(λ,µ) ε(µ) = 2h− 2(sin(2η))2

sinh(λ− iη) sinh(λ+ iη)
. (1.4)

The condition that the dressed energy vanishes at the Fermi edgeε(±3) = 0 determines
3 as a function of the magnetic fieldh. It was shown in [2] that the ground state of (1.1)
for |1| < 1 is partially magnetized for magnetic fieldsh < hc = 4 cos2(η). For larger
magnetic fieldsh > hc the ground state is the saturated ferromagnetic state. Forh → 0 the
integration boundary3 tends to∞, whereas forh → hc 3 → 0. Below we only consider
the regionh < hc and in particular the limiting caseh → hc.

The subject of this paper is the generating functional of correlation functions

G(m) = 〈exp(αQ1(m))〉 = 〈0| exp

(
α

m∑
j=1

1 − σ zj

2

)
|0〉 (1.5)

where|0〉 is the ground state.
Various correlation functions can be obtained from〈exp(αQ1(m))〉, (e.g., the

Ferromagnetic String Formation Probability [10] which corresponds to settingα = −∞) or

〈0|σ zmσ z1 |0〉 = 21̂〈0| ∂
2

∂α2

∣∣∣∣
α=0

exp(αQ1(m))|0〉 + 1 − 4
∫ 3

−3
dλ ρ(λ) (1.6)

where 1̂ is the lattice Laplacian acting on a functionf (j) defined on the lattice as
1̂f (j) = f (j) + f (j − 2) − 2f (j − 1) and ρ(λ) is defined in (1.3). In what follows
we will considerG(m) in the limit h → hc. As will be shown belowG(m) is connected
to the solution of a Painlevé V transcendent. The connection of Painlevé transcendents and
integrable models with free-fermionic spectra is well established [3–5]. However, we want
to emphasize that in the present case we are dealing with a theory ofinteracting fermions,
so that the connection is novel.

2. Determinant representation

In a recent paper [6] we used the approach invented in [7, 8] (for a detailed exposition of this
method see [9]) to derive the following representation ofG(m) in terms of the determinant
of a Fredholm integral operator.

〈0| exp(αQ1(m))|0〉 = (0̃| det
(
1 + V̂

)|0)
det

(
1 − K̂/2π

) . (2.1)

HereK̂ and V̂ are Fredholm integral operators with kernels given by (1.3) and

V (λ, µ) = − sin(2η)

2π sinh(λ− µ)

{
1

sinh(λ− µ+ 2iη)
+ e−1

2 (λ)e2(µ)

sinh(λ− µ− 2iη)



Quantum correlation function of the XXZ antiferromagnet 5621

+eα+ϕ4(µ)−ϕ3(λ)

(
1

sinh(λ− µ− 2iη)
+ e−1

1 (µ)e1(λ)

sinh(λ− µ+ 2iη)

)}
(2.2)

where

e2(λ) =
(

sinh(λ+ iη)

sinh(λ− iη)

)m
eϕ2(λ) e1(λ) =

(
sinh(λ− iη)

sinh(λ+ iη)

)m
eϕ1(λ) . (2.3)

The quantitiesϕj (λ) are bosonic quantum fields [7] (they are called ‘dual quantum fields’)
defined by

ϕa(λ) = pa(λ)+ qa(λ) (0̃|qa(λ) = 0 = pa(λ)|0) (0̃|0) = 1

[qb(µ), pa(λ)] =


1 0 1 0

0 1 0 1

0 1 1 1

1 0 1 1


ab

ln(h(λ, µ))+


1 0 0 1

0 1 1 0

1 0 1 1

0 1 1 1


ab

ln(h(µ, λ))
(2.4)

wherea, b = 1, . . . ,4, h(λ, µ) = (
sinh(λ − µ + 2iη)/i sin(2η)

)
. Note that the dual fields

have the important property that they commute

[ϕa(λ), ϕb(µ)] = 0 . (2.5)

3. The limit of strong magnetic field

For large magnetic fieldsh → hc, h < hc the integration boundary3 tends to zero according
to

3 = 1
2| tan(η)|

√
hc − h+ O(hc − h) . (3.1)

This fact can be used to essentially simplify the above representation as was first done
for a different correlation function in [10]. We first expand the kernelV (λ, µ) for small
|λ|, |µ| 6 3. We definey = m| cot(η)| as a shorthand notation. We then observe the
following simplification of the commutation relations between the ‘momenta’pa(λ) and
‘coordinates’qa(λ):

[qb(µ), pa(λ)] =


0 0 1 −1

0 0 −1 1

−1 1 0 0

1 −1 0 0


ab

i cot(2η)(µ− λ)+ O(32) . (3.2)

This allows us to reduce the number of dual fields from four to two via the identification
ϕ2(λ) = −ϕ1(λ) andϕ4(λ) = −ϕ3(λ). Furthermore the right-hand side of the commutators
(3.2) is a linear function ofλ − µ so that we can choose a representation such thatϕa(λ)

are linear functions inλ:

ϕa(λ) = ϕa + ϕ′
aλ pa(λ) = pa + p′

aλ qa(λ) = qa + q ′
aλ a = 1, 3 (3.3)

where [pa, qb] = 0, [p′
a, q

′
b] = 0, and

[q3, p
′
1] = −[q1, p

′
3] = [q ′

1, p3] = −[q ′
3, p1] = −i cot(2η) . (3.4)

As ϕ1(λ) appears in (2.2) only in the combinationϕ1(λ) − ϕ1(µ) the quantityϕ1 drops
out. This in turn implies thatp′

3 and q ′
3 commute with all remaining operators and thus

will not contribute to the expectation value with respect to(0̃| and |0). Therefore we
can drop them everywhere. In the next step we perform a similarity transformation with
exp(iλ(y+ 1

2iϕ′
1)), which leaves the determinant of the Fredholm integral operator invariant
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but brings the kernel to a more symmetric form, in which the dual fields now only enter
via the expressionŝα := α − 2ϕ3 and x̂ := y + 1

2iϕ′
1. In what follows it is crucial that

the quantum operators in the dual bosonic Fock spacex̂ and α̂ are commuting objects and
no problems with operator orderings occur before we evaluate the expectation value with
respect to(0̃| and |0).

Now putting everything together we arrive at the following simplified representation
valid in the limit h → hc:

〈exp(αQ1(m))〉 = (0̃| det
(
1 + V̂0

)|0)(1 + 23

π
cot(2η)+ O(32)

)
(3.5)

where the kernel of̂V0 is given by

V0(λ, µ) = (exp(̂α)− 1)
sin((λ− µ)̂x)

π(λ− µ)
. (3.6)

Here we use the following notation for the dual fields:

α̂ = α + α̂q + α̂p x̂ = y + x̂q + x̂p (0̃|̂xq = (0̃|̂αq = 0

x̂p|0) = α̂p|0) = 0 [̂xq, α̂p] = [α̂q , x̂p] = − cot(2η) [α̂, x̂] = 0 .
(3.7)

All other commutators vanish. We would like to emphasize thatα̂ and x̂ commute, which
is important for the further analysis.

4. Connection with Painlev́e V

Let us define a new variablet = 3x̂ and consider the object

σ0(t) = t
d

dt
ln(det(1 + V̂0)) . (4.1)

It was shown in [4] thatσ0 obeys a Painlev́e V differential equation in the case where
α andx are real numbers. In our casêα and x̂ are quantum operators, but due to the fact
that they are commuting we still can follow through the derivation of [4]. We thus find that
σ0(t) obeys the following nonlinear differential equation:(

t
d2σ0

dt2

)2

= −4

(
t
dσ0

dt
− σ0

) (
4t

dσ0

dt
+

(
dσ0

dt

)2

− 4σ0

)
(4.2)

which is identified (see [4]) as aτ -function form of the Painlev́e V equation. Rewriting
equations (4.2) in terms of the functiony0(t) defined through

σ0(t) = −4itu(t)+ u2(t)

y0(t)
(y0(t)− 1)2 u(t) = 4ity0(t)− tdy0(t)/dt

2(y0(t)− 1)2
(4.3)

one obtains (again see [4]) the standard form of the Painlevé V differential equation for the
functionω(t) = y0(

1
2t):

d2ω

dt2
=

(
dω

dt

)2 3ω − 1

2ω(ω − 1)
+ 2ω(ω + 1)

ω − 1
+ 2iω

t
− 1

t

dω

dt
. (4.4)

The larget asymptotics of the solution of the above equations are known (see [5, 11–13])
and can be used to extract the large distance asymptotics of our Fredholm determinant.
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Combining the results of [5] (asymptotics forσ0) and [11, 13] (constant term) we obtain
that

ln(det(1 + V̂0)) = 2

π
3x̂α̂ + α̂2

2π2
ln(43x̂)+ 2 ln

(
g

(
α̂

2π

))
+ α̂3

8π3x̂3

− 1

x̂2

[
α̂2

32π232
cos(4θ)+ 5̂α4

128π432

]
+ O

(
1

33y3

)
(4.5)

where the distancey must be large (the product ofy and the small parameter3 should go
to infinity) and where

g(ν) = e(1+γ )ν2
∞∏
n=1

(
1 + ν2

n2

)n
e−ν2/n

= exp

(
ν2 − 1

2

∫ ν2

0
dt

[
ψ(1 + i

√
t)+ ψ(1 − i

√
t)

])
4θ = 43x̂ + 2

π
α̂ ln(43x̂)− 4 arg0

(
iα̂

2π

)
(4.6)

whereψ(z) = d ln0(z)/dz is the digamma function andγ is Euler’s constant. Formula
(4.6) for the phaseθ of the corresponding solution of the Painlevé V equation (4.4) was
also obtained in [12]. In order to obtain the large-distance asymptotics of the correlation
function we still have to evaluate the expectation value in the dual bosonic Fock space. It
is easiest to evaluate the quantities〈Q1(m)

k〉 = 〈∂k/∂αk∣∣
α=0eαQ1(m)〉 directly. Expanding

exp

(
α̂2

2π2
ln(43x̂)

)
= exp

(
α̂2

2π2
ln(43y)

) [
1 + α̂2

2π2

x̂p + x̂q

y
+ O(y−2)

]
exp

(
α̂3

8π33x̂

)
= 1 + α̂3

8π33y
+ O(3−1y−2)

(4.7)

we obtain the leading terms in the asymptotic decompositions as shown in the appendix:

〈Q1(m)〉
∣∣
lead = 23

π
m| cotη|

(
1 + 63

π
cot(2η)+ O(32)

)

〈(Q1(m))
2〉∣∣lead =

[(
23

π
m| cotη|

)2

+ ln(43m| cotη|)+ 1 + γ

π2

]

×
(

1 + 83 cot(2η)

π
+ O(32)

)
+ 63 cot(2η)

π3
+ O(32) .

(4.8)

Analogous formulae can be derived for(Q1(m))
k for k > 2. Using equation (1.6) we are

now in a position to determine the large-distance asymptotics of the〈σ zmσ z1〉 correlation
functions. By acting with (twice) the lattice Laplacian on (4.8) we obtain

− 2

m2π2

(
1 + 83 cot(2η)

π
+ O(32)

)
. (4.9)

This does not yet include the contribution from the cosine term in (4.5), which is very small
as far as〈(Q1(m))

2〉 is concerned but becomes important upon differentiation. The leading
contribution can be obtained by the methods explained in the appendix and is found to be(

2

π2
+ O(3)

)
cos(43m| cotη|(1 + O(3))) 1

mθ
(4.10)
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where

θ = 2 + 83 cot(2η)

π
+ O(32). (4.11)

Our final result for the first three terms of the asymptotics of the correlation function is thus

〈σ zmσ z1〉 = 1 − 83| cot(η)|
π

− 2

m2π2

(
1 + 83 cot(2η)

π

)
+ 2

π2mθ
cos(43m| cotη|)+ . . .

(4.12)

where the errors in the3-expansion are given above. This agrees with the result obtained
by means of finite-size corrections and conformal field theory.

5. Summary and conclusion

In this paper we have established a connection between the generating functional of
correlation functionsG(m) (1.5) (and thus the correlator〈σ zmσ z1〉) of the spin 1

2 Heisenberg
XXZ model in a magnetic field close to critical and the Painlevé V differential equation.
Painlev́e transcendents were known to describe correlation functions for models with free-
fermionic spectra [3, 5]. For generic magnetic fields in theXXZ spin chain the general
approach of [9] should be followed: the determinant representation (2.1), (2.2) should be
used to embed the quantum correlation function in an integrable system of integro-difference
equations and one then should solve the associated Riemann–Hilbert problem.

Acknowledgments

We are grateful to Barry McCoy for helpful discussions and to Gordon Chalmers for
consultations on normal ordering. This work was partially supported by the Deutsche For-
schungsgemeinschaft under Grant No Fr 737/2–1 and by the National Science Foundation
(NSF) under Grants Nos PHY-9321165 and DMS-9501559. FHLE is supported by the EU
under Human Capital and Mobility Fellowship Grant ERBCHBGCT940709.

Appendix

In this appendix we discuss how to evaluate the expectation value with respect to the dual
quantum fields and explicitly evaluate the quantities〈(Q1(m))

k〉. According to (3.5)

〈(Q1(m))
k〉 = (0̃|∂k/∂αk∣∣

α=0 det
(
1 + V̂0

)|0)
1 − (23/π) cot(2η)+ O(32)

. (A.1)

Using equation (4.5) for the asymptotics of the logarithm of the determinant and expanding
according to (4.7) we see that in order to get the leading asymptotics we need to evaluate
the derivatives of expectation values of the form

(0̃| exp

(
2

π
3x̂α̂

)
exp

(
α̂2

2π2
ln(43y)

) (
g

(
α̂

2π

))2 [
1 + α̂2

2π2

x̂p + x̂q

y

] [
1 + α̂3

8π33y

]
|0) .

(A.2)

Using the commutation relations (3.7) we see that we can bring all terms into the form (we
use that(0̃|̂xq = 0)

(0̃|̂xmp e23x̂α̂/πF (̂α)|0) (A.3)
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whereF (̂α) is only a function of̂α and contains nôxp ’s or x̂q ’s. The central identities we
will use in order to evaluate the expectation values are

zm = (0̃|̂xmp e23x̂α̂/πF (̂α)|0)

= 1

κ
(0̃|

(
x̂p

κ
+ 23 cot(2η)

πκ
y

)m
exp

(
23α

πκ
(y + x̂p)

)
F (̂α)|0) . (A.4)

whereκ = 1− (23/π) cot(2η). The identities are established via induction. The induction
startm = 0 is proved as follows. Expanding the exponential and using that(0̃|̂xq = 0,
α̂p|0) = 0 and [̂αp, α̂q ] = 0 (to move all̂αp ’s to the right) we obtain

z0 = (0̃|
∞∑
n=0

1

n!

(
23

π

)n
(y + x̂p)

n(α + α̂q)
nF (̂α)|0) . (A.5)

Expanding

(0̃|(y + x̂p)
n(α + α̂q)

n =
n∑
k=0

n!

k!(n− k)!
(0̃|(y + x̂p)

nα̂kqα
n−k (A.6)

and then using the commutation relations

(0̃|[f (̂xp), α̂kq ] = (0̃|(cot(2η))kf (k)(̂xp) (A.7)

wheref (k) is thekth derivative of the functionf , we arrive at

z0 =
∞∑
n=0

n∑
k=0

(
23

π

)n
n!(cot(2η))kαn−k

k![(n− k)!] 2
(0̃|(y + x̂p)

n−kF (̂α)|0) . (A.8)

We now use the integral representation

1

(n− k)!
= 1

2π i

∮
dt

et

tn−k+1
(A.9)

where the integration contour is a small circle around the origin (and we integrate in the
mathematically positive direction) in order to be able to perform thek-summation (which
is of the form of a binomial sum)

z0 = 1

2π i

∮
dt

et

t

∞∑
n=0

(
23

π

)n
(0̃|[cot(2η)+ (α/t)(y + x̂p)]

nF (̂α)|0) . (A.10)

The n-summation can be performed using(1 − z)−1 = ∑∞
k=0 z

k. Finally we perform the
t-integration formally using the identity

1

2π i

∮
dt

et

t −O(α)
= eO(α) (A.11)

whereO(α) is an operator depending onα. Here we need to keep in mind that we are
interested in evaluating derivatives with respect toα at α = 0. This yields the result (A.4)
for m = 0. The induction step goes as follows. We rewritezm as

zm = (0̃|̂xm−1
p [x̂p, e23x̂α̂/πF (̂α)]|0) (A.12)

where we used that̂xp|0) = 0. Evaluating the commutator using

x̂pf (̂α)|0) = cot(2η)f ′(̂α)|0) (A.13)

wheref ′ is the derivative off and collecting terms we obtain

zm = 1

κ
(0̃|̂xm−1

p e23x̂α̂/π

[
cot(2η)F ′(̂α)+ 23 cot(2η)

π
yF (̂α)

]
|0) . (A.14)
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Using the induction assumption and again (A.13) then yields the desired result (A.4). Let
us now demonstrate how to evaluate the leading contributions to (A.2) for〈Q1(m)〉 and
〈(Q1(m))

2〉. They are given by

〈(Q1(m))
l〉∣∣lead = ∂l

∂αl

∣∣∣∣
α=0

(0̃|e23x̂α̂/π exp

(
α̂2

2π2
ln(43y)

) (
g

(
α̂

2π

))2

|0)

×
(

1 + 23

π
cot(2η)+ O(32)

)
. (A.15)

We apply (A.4) withm = 0 and F(α) = êα
2 ln(43y)/2π2

(g(̂α/2π))2, then perform the
differentiations with respect toα and setα to zero, and finally use (A.13) to evaluate
the expectation value using the fact that(0̃|̂αq = 0, α̂p|0) = 0. The functiong has the
properties thatg(0) = 1, g′(0) = 0 andg′′(0) = 2(1 + γ ), whereγ is Euler’s constant,
which leads to the result

〈Q1(m)〉
∣∣
lead = 23

π
m| cotη|

(
1 + 63

π
cot(2η)+ O(32)

)
〈(Q1(m))

2〉∣∣lead =
((

23

π
m| cotη|

)2

+ ln(43m| cotη|)+ 1 + γ

π2

)
×

(
1 + 83 cot(2η)

π
+ O(32)

)
.

(A.16)

The contributions of the subleading terms can be taken into account in an analogous way,
which leads to the results (4.8). We note that contributions from further subleading terms
are of higher order in3 andy.
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